Real-Time Human Pose Tracking from Range Data
نویسندگان
چکیده
Tracking human pose in real-time is a difficult problem with many interesting applications. Existing solutions suffer from a variety of problems, especially when confronted with unusual human poses. In this paper, we derive an algorithm for tracking human pose in real-time from depth sequences based on MAP inference in a probabilistic temporal model. The key idea is to extend the iterative closest points (ICP) objective by modeling the constraint that the observed subject cannot enter free space, the area of space in front of the true range measurements. Our primary contribution is an extension to the articulated ICP algorithm that can efficiently enforce this constraint. Our experiments show that including this term improves tracking accuracy significantly. The resulting filter runs at 125 frames per second using a single desktop CPU core. We provide extensive experimental results on challenging real-world data, which show that the algorithm outperforms the previous state-of-the-art trackers both in computational efficiency and accuracy.
منابع مشابه
Real-time head tracking and 3D pose estimation from range data
In this paper a head tracking algorithm using 3D data is described. The system relies on a novel 3D sensor that generates a dense range image of the scene. By not relying on brightness information, the proposed system guarantees robustness under various illumination conditions, and content of the scene. The main novelty of the proposed algorithms, with respect to other head tracking techniques,...
متن کاملReal-Time Interference Detection in Tracking Loop of GPS Receiver
Global Positioning System (GPS) spoofing could pose a major threat for GPS navigation ‎systems, so the GPS users have to gain a better understanding of the broader implications of ‎GPS.‎ In this paper, a plenary anti-spoofing approach based on correlation is proposed to distinguish spoofing effects. The suggested ‎method can be easily implemented in tracking loop of GPS receiver...
متن کاملReal-Time Human Pose Detection and Tracking for Tele-Rehabilitation in Virtual Reality
We present a real-time algorithm for human pose detection and tracking from vision-based 3D data and its application to tele-rehabilitation in virtual environments. We employ stereo camera(s) to capture 3D avatars of geographically dislocated patient and therapist in real-time, while sending the data remotely and displaying it in a virtual scene. A pose detection and tracking algorithm extracts...
متن کاملFlowCap: 2D Human Pose from Optical Flow
We estimate 2D human pose from video using only optical flow. The key insight is that dense optical flow can provide information about 2D body pose. Like range data, flow is largely invariant to appearance but unlike depth it can be directly computed from monocular video. We demonstrate that body parts can be detected from dense flow using the same random forest approach used by the Microsoft K...
متن کاملCascaded 3D Full-body Pose Regression from Single Depth Image at 100 FPS
There are increasingly real-time live applications in virtual reality, where it plays an important role to capture and retarget 3D human pose. This paper presents a novel cascaded 3D full-body pose regression method to estimate accurate pose from a single depth image at 100 fps. The key idea is to train cascaded regressors based on Gradient Boosting algorithm from pre-recorded human motion capt...
متن کامل